
Change of the Shape of a Chemical Vortex Due To a Local Disturbance

Rubin R. Aliev,* ,†,‡ Vasily A. Davydov,†,§ Takao Ohmori,† Masaru Nakaiwa,† and
Tomohiko Yamaguchi*,†

National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan,
Institute of Theoretical and Experimental Biophysics, Puschino, Moscow region 142292, Russia, and
Moscow State Institute of Radioengineering, Electronics and Automation, Vernadskogo 78, Moscow, Russia

ReceiVed: July 29, 1996; In Final Form: NoVember 18, 1996X

We studied the dynamics of a chemical vortex whose core was disturbed by visible light. The observed
sharp change of the shape of the vortex and the unfolding increase in the vortex wavelength proved to be
tightly related to a transformation of trigger waves to phase waves. Analytical estimations and direct
measurements show that the shape of the vortex is well-fitted by a logarithmic spiral. The results of experiments
and of computer simulations are in a good agreement.

1. Introduction

After the discovery of the chemical vortex1,2 it was found
that such vortices can exhibit either stable or compound rotation
(“meandering”),3,4 drift in inhomogeneous media,5 and drift due
to external high-frequency stimulation6 and in the case of
parametric resonance.7,8 The analysis of the mechanisms of the
vortex dynamics shows that the phenomena mentioned above
can be understood if one considers the dynamics of the tip of
the vortex, i.e. a part of the vortex situated close to the core.
The diameter of the coredc is related to the wavelength so that
λ/dc is aboutπ.5 The ratioλ/d is nearly constant for systems
of different nature.9

Many experimental and theoretical investigations showed that
the vortex has a form of an Archimedian spiral10,11 and the
emitted waves have the wavelength close to the minimum
possible in the medium (hereafter we term such waves “short
waves” to distinguish from “long waves”). The dynamics of
short waves differs significantly from the dynamics of long
waves.12,13 Particularly, the dynamics of long waves is described
by the Burgers equation,14 which is not valid for short waves.
Recent studies of vortices in oscillatory media show that the
Archimedian spiral is not the unique form of the vortex and
along with a transition of short waves (trigger waves) to long
waves (phase waves)13 marked changes in the shape of the
vortex occur.15,16

In this work we continue the study of the dynamics of a
chemical vortex whose core was irradiated by visible light. In
contrast to irradiation of the entire medium, which resulted in
a parametric resonance and drift of the vortex without marked
changes of its shape,7,8 a local irradiation of the core induces
drastic changes of the shape of vortex. Along with the changes
in the shape of the vortex, we observed significant changes in
the main parameters of the vortex, particularly in the wavelength
of the vortex. We relate the observed effects to the transition
of trigger waves to phase waves.

2. Experimental Setup and Numerical Procedure

We carried out the experiments using a typical composition
of the BZ reaction:16 NaBrO3, 0.5 M; CH2(COOH)2, 0.25 M;

H2SO4, 0.25 M; Ru(bpy)3Cl2, 2 mM. The solution was carefully
stirred and poured into a 5.9 cm diameter Petri dish, which was
then covered with a glass lid.
We used light from a 50 mW argon ion laser, wavelength

488 and 514.5 nm, to irradiate the medium. Light irradiation
of the BZ reaction led to the production of bromide ions,17-20

which partly suppressed wave conduction. By irradiating the
core of the vortex we simply increased its diameter from 0.3 to
0.6 mm. The core of the vortex was the only part of the medium
subjected to irradiation.
The dynamics was followed with a video recorder connected

to an SGI Indy computer. Simple image processing was
performed to measure spatio-temporal characteristics, such as
frequency and wavenumber.12

To simulate the dynamics of vortices we used a two-variable
model of the BZ reaction:

It has been verified that this model adequately simulates
spatio-temporal dynamics in the BZ reaction.5,21,13 We used
a set of parameters as described in ref 13. The simulations were
carried out using the Euller’s method of integration in rectan-
gular coordinates.
To prevent meandering, i.e. a complicated trajectory of the

vortex tip,4 a vortex was simulated as rotating around a circular
obstacle. The radius of the obstacle was assumed to be the
radius of the vortex core,rc. We carried out simulations using
the two types of boundary conditions: (i) typically used for
simulations of reaction-diffusion systems restriction∂u/∂n )
0, i.e. the Neumann’s “no flow” condition and (ii)∂2u/(∂n)2 )
0, i.e. the “constant flow” condition. The reasoning behind the
use of these conditions is explained in the Results section.
Identical conditions were imposed on the inner (core) and outer
boundaries.

3. Results

3.1. Experimental Results.Under the chosen experimental
conditions a chemical vortex is seen as an Archimedian spiral
(Figure 1a,b). Irradiation of its core gives rise to an additional
bromide ion production17-20 and enlarges the core. Measure-
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ments made under similar conditions show that the core diameter
increases from 0.3 to 0.6 mm.16

Following the change of the core size, the dynamics of the
wave close to the core change as well.16 In Figure 1c the
thickening of the tip of the spiral is clearly seen. The thick
part is seen as propagating along the vortex together with an
unfolding increase of the vortex wavelength (Figure 1d-j).
Switching off the irradiation returns the core size back to its
initial value and the shape of the vortex to the Archimedian
spiral (central part of Figure 1k,l).
To study the evolution of the main vortex parameters it is

convenient to plot space-time charts. We traced the change
of some of the main characteristics of the vortex along a line
through the core (Figure 2). It is seen that frequency and
wavenumber drop with time, while the velocity of propagation
increases to infinity. Unlimited rise of the velocity is associated
with a transition to phase waves. High velocity makes it

impossible to have reliable measurements near the core (see
Figure 2c,d).
To follow the evolution of the main characteristics of the

vortex, it is instructive to trace the dynamics at a point. Figure
3 shows the time dependence of the period of rotation and
wavelength measured at 1.7 mm from the center of the core.
Note that there is a jump in the value of the period (from 8 to
10 s att ) 50 s). The further gradual changes in the period are
due simply to reagent aging. Such a jump was not observed
for wavelengthλ (Figure 3b). The comparison of the period
evolution and wavelength evolution shows that during the
measured intervalλ increases by a factor of at least 8, whileT
rises by only 40% (including reagent-aging effect). Such
dynamics cannot be explained in terms of known theories.
The above data can be used to plot a dispersion curve, i.e. a

dependence of velocity of propagating waves on the period in
a wavetrainV(T) or a dependence of frequency on the wave-
numberω(k) (Figure 4). These dependences are typical for
oscillatory media. For the relationV(T) two distinct parts are
seen: slight dependence ofV on T for T < 10 s and unfolding
rise ofV atT> 10 s. The first part corresponds to trigger waves,

Figure 1. Change of the shape of the vortex induced by irradiation of
the core: (a) Archimedian spiral, (b)-(j) irradiation turned on, unfolding
increase of the wavelength is seen, (k), (l) irradiation turned off, the
vortex again possesses the form of an Archimedian spiral with short
wavelength. The size of each snapshot is 7.3× 7.3 mm; the interval
between snapshots is 1 min.

Figure 2. x-t charts of the main parameters of the vortex: (a) ferriin
distribution, (b) frequencyω, (c) wave numberk, (d) velocityV. For
every chart space (x-axis, directed rightward) range is 1.7 cm; time
(y-axis, directed upward) range is 330 s. Light shade corresponds to
large value.

Figure 3. Time dependence of the period of rotationT (a) and
wavelengthλ (b). Note thatT increased by less than 40%, whileλ
increased at least 8 times.

Figure 4. Experimentally measured dispersion relations (a)V(T) and
(b) ω(k). The branches of long waves ((a)T > 10, (b) k < 45) and
short waves ((a)T < 10, (b)k > 45) are clearly distinguished.
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the other corresponds to phase waves. The related parts in
Figure 4b arek > 45 andk < 45 rad/cm (see ref13 for more
discussion of the correspondence between types of waves and
the shape of dispersion relation).
The observed changes of the vortex shape (Figure 1) can be

understood if one considers that upon increasing the core size
we decrease the wavenumberk ) 1/rc for waves near the tip.
Thus we expect that by decreasingk below a critical13 we have
a change in the type of wave which results in a change of the
shape of vortex.
3.2. Computer Simulations. We carried out computer

simulations to check the hypothesis that by changing the size
of the core it is possible to change the shape of the vortex.
In Figure 5a it is seen that the vortex has the form of an

Archimedian spiral if the core is small. After the core enlarged
(the effect of light irradiation), the shape of the vortex changes
significantly (Figure 5b-f), which is seen as a thickening of
the excited part (white parts in Figure 5 correspond to high
concentrations of ferriin). The dynamics is very similar to those
experimentally observed (compare Figure 1a-j).
For this simulation, “no flow” boundary conditions were

imposed which are conventionally used for computer modeling
of reaction-diffusion systems. However, better fit of the
experimental situation can be achieved if constant flow condi-
tions are imposed. This particularly assumes that there is no
barrier for diffusion of chemical species near the core.
Imposing the constant flow boundary conditions, we observe

similar wave patterns to occur (compare Figure 6b and Figure
5f). The difference is in the species distribution near the core,
where the isophase lines are no longer perpendicular to the core
boundary.
We made long-term simulations (more than 500 rotations)

to study the established shape of the vortex as shown below.
3.3. Analytical Approach. In this section we estimate the

shape of a stationary rotating phase rotor. To simplify the
consideration we use the “kinematic” approach,22,23 i.e. we
consider motion of an isophase line as a result of interference
of dispersion relation and curvature of the line.
A recent study13 shows that the dynamics of small perturba-

tions of the limit cycle can be described by the Burgers
equation14

whereφ is the phase of oscillations,∇φ and∆φ are the gradient
and the Laplacian of the phase,ω0 is the frequency of bulk
oscillations, and A and D are constants.
To estimate the effects of dispersionw(k) and of curvatureK

of a propagating pulse, it is convenient to consider a train of
circular waves and to rewrite eq 2 in a polar coordinate system
(r,ψ):

Here we assumeK ) 1/r to be small. Introducing the frequency
ω ) ∂φ/∂t and the wavenumberk ) -∂φ/∂r, one can obtain
the dispersion relation for curved pulses:

To apply the above formula for a vortex, let us note that in
the case of a stationary rotation all the isophase linesφ )
constant have the identical shape. In this case wavenumberk
) (r cosθ)-1 (θ is the angle between the polar radiusr and the
tangent to a isophase line).
Substitutingk into eq 4 we obtain an equation to describe

the shape of the vortex:

At a distance far from the core, the curvatureKmust approach
zero. This is satisfied providedw ) w0. Therefore at larger
the curvature of an isophase line obeys the following equation

with the parameterp ) D/A.
Now we can show that the eq 5 has a solution in the form of

a logarithmic spiral:r ) r0 exp(aψ). Actually, for a logarithmic
spiral the curvatureK and the angleθ are

It is seen that the relation betweenK andθ is satisfied in eq 6
if

To apply the above formulas, we measured the shape of the
front line for the vortex displayed in Figure 6. We introduced
a polar system of coordinates (r,ψ) with the pole in the center
of the core. The dependence of log(r) onψ for the front of the

Figure 5. Computer simulations of the transition from an Archimedian
spiral (a) to a phase rotor (f). Light shade corresponds to high
concentration of ferriin. The black disk in the center is the core of the
vortex. Snapshots are made with the interval of 50 bulk oscillations.
The core size is enlarged twice just after the snapshot (a). Note that
the differences between snapshots (d)-(f) are hardly seen, denoting
that the transients are died out. The vortex was simulated in the medium
512× 512 elements with Neumann’s “no flow” boundary conditions.
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Figure 6. Phase rotor after 500 rotations: (a) bromous acid distribution
and (b) ferriin distribution. Light shade corresponds to high concentra-
tion of the species. The vortex was simulated in the medium 512×
512 elements with constant flow boundary conditions.
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vortex is plotted in Figure 7. Note that this dependence is linear,
and therefore the shape of the front line is actually a logarithmic
spiral with the coefficient|a| ) 0.76. Substituting this value
into eq 7 we find thatp ) 2.08. It is worthwhile to emphasize
that this value (the ratio of the two coefficients of the Burgers
equation (2)) can be measured independently;13 using the data
from the cited paper we findp ≈ 2 and is in a very good
agreement with the above estimations.

4. Discussion

Conventionally, chemical vortices were believed to have the
shape of an Archimedian spiral such thatλ/dc≈ π.9 The results
of recent works15,16show the possibility of an alternative shape.
In this paper we have reported the dynamics of change of the
shape of a vortex caused by a local disturbance of the vortex
core. The direct measurements of changes of the wavelength
λ (Figure 3) shows that the ratioλ/dc is much larger thanπ.
This fact is a strict evidence that the changes of the vortex shape
are not just deformations of an Archimedian spiral.
An interesting question on the dynamics could be: Is there

a critical size of the core across which the long-distance form
of the vortex changes? Recent numerical simulations15 show
that such a critical size does exist. The asymptotic shape of
the vortex is subjected to sharp changes (a bifurcation) when
the core radiusrc exceeds the critical value.15 To roughly
estimate this critical value we should recall that the changes of
the shape of a vortex are due to the change of the type of waves
from trigger waves to phase waves near the point of inflation
(k ) ki, ω ) ωi) of the dispersion curveω(k).13 Thus, it is
natural to expect changes of the vortex dynamics to occur when
the wavenumberk ) 1/rc passes through a critical value near
ki. These speculations are well-confirmed by numerical experi-
ments.15

The shape of the experimentally measured dispersion relations
(Figure 4) is similar to that reported in ref 13. The dispersion
relations consist of the two branches: one of trigger waves and
the other of phase waves. As is mentioned above, the existence
of the two clearly distinct branches and the possibility of change
of the type of waves during the evolution13 are responsible for
the observed changes of the shape of vortex. Actually, a vortex
with the shape of an Archimedian spiral is a source of short
waves (trigger waves), while a source of long waves (phase
waves), phase rotor, has a different shape.
The equation (5) used to estimate the shape of the vortex is

valid for small wavenumbers only. Thus, it cannot be applied
for the case of an Archimedian spiral with short wavelengths.
The question if this equation admits alternative physically
meaningful solutions should be a subject for a separate study.
It should be noted that the discussed phenomena were

observed in a particular case of the Belousov-Zhabotinsky
reaction. However the analysis of the dynamics is based on
rather general descriptions. Therefore we believe that similar
dynamics can be observed in oscillatory systems of a different
nature.
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Figure 7. Front line of the phase rotor (thick line) in a polar system
of coordinates. The front line is well-approximated by a straight line
(thin line) with the slopea ) -0.76 rad-1.
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